
CSCI 210: Computer Architecture

Lecture 17: Arithmetic Logic Unit

Stephen Checkoway

Slides from Cynthia Taylor

1

CS History: Mohamed M. Atalla

• Born in 1924 in Egypt
• Invented the MOSFET (metal-oxide

semiconductor field-effect transistor)
with Dawon Kahng in 1960

• First truly compact transistor
• MOS transistors are the fundamental

building blocks of today’s electronics
• Most manufactured device in history

– 13 sextillion MOS transistors
manufactured as of 2018

• Went on to start a cybersecurity
company, invented the “Atalla box”
which secures most ATMs

, أحمد بن طارق CC BY-SA 4.0

Arithmetic and Logical Unit (ALU)

• Need to use digital logic to build a unit that can do basic
computation – math, logical operations, etc.

• Needs to be 32 bits wide, since MIPS has 32 bit words.

– Build out of 1-bit ALUs

Our ALU will support the following instructions:

• Or/Ori

• And/Andi

• Add/Addi

• Sub

• Nor/Nori

• Nand/Nandi

• Set less than

1-bit ALU: AND and OR

• Inputs go to both AND and OR

• Multiplexer selects AND or OR function for output

1-bit Binary Adding

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 10

Need to account for two output bits!

Half Adder

• Inputs a, b

• Outputs sum and carry out

• Sum is the 1-bit result of adding a and b

• Carry out is the carry in the normal sense

Below is the truth table for the SUM output of a half adder.
What is the Boolean algebra function that will give us this truth

table?

A. a OR b

B. a XOR b

C. a AND b

D. a NOR b

E. None of the above

a b Sum

0 0 0

0 1 1

1 0 1

1 1 0

Below is the truth table for the CARRY output of a half adder.
What is the Boolean algebra function that will give us this truth

table?

A. a OR b

B. a XOR b

C. a AND b

D. a NOR b

E. None of the above

a b Carry out

0 0 0

0 1 0

1 0 0

1 1 1

Binary Addition with Arbitrary Number of Bits

• Just like regular, grade school addition

– Make sure we carry a 1 to the next digit when needed

• Now we need to be able to account for the carry-in from the
next least-significant bit

• Example: 7+5

Full Adder from Half Adders

• Need carry-in, as well as carry-out

What if both half adders have carry-out?

A. We will get the wrong answer

B. We will ignore it; the answer
will still be correct

C. That will never happen

D. None of the above

Ripple-Carry Adder

• Create adder for an arbitrary number of bits simply by
connecting carry-out from adder n-1 to the carry-in for adder n

• Carry bit “ripples” up

1-bit ALU

Subtraction: a − b

• Just add negative version of b!

• To negate operand, transform to two’s compliment

– Invert each bit

– Add one

We can use a NOT gate to invert the input. To add
one to the input, we should

A. Set the carry-in for the least significant bit to 1.

B. Add a new “subtract” input that we set to 1 for subtraction.

C. Do something else.

1-bit ALU with Subtraction

Adding NOR

• Want to add NOR functionality

• DeMorgan’s Law

– (A+B) = A ̅B̅

To add NOR to the ALU, we need to add

A. Nothing

B. The ability to invert A

C. A NOR gate

D. Something else DeMorgan’s Law
(A+B) = A ̅B̅

1-bit ALU with NOR

Adding slt

• slt rd, rs, rt

– rd = 1 if rs < rt, and 0 otherwise

• Only sets least significant bit

– All other bits are 0

1-bit ALU: Add new input for slt

In all but the least significant bit,
Less will always be 0

How do we tell if a < b?

• Subtract b from a

• If a – b < 0, then a < b

• We can check this by checking the most significant bit

– MSB = 1, a < b

• Problem: Output is at Most
Significant Bit, we need it at
Least Significant Bit

• Solution: Special ALU for Most
Significant Bit, with output for
SLT

• Hook SET output into LESS input
for Least Significant Bit

1-bit ALU for the Most Significant Bit

This doesn’t
always work!
You’ll fix it in
problem set 6

Recall: Overflow

• If we add two n-bit numbers, we may end up with a n+1 bit
number

• Hardware can detect this

a and b have different signs. Will adding them ever
result in overflow?

A. Yes

B. No

Adding overflow detection to add

• If a and b have different MSBs, then there is no overflow

• If a and b have the same MSB, then

– If the output MSB is different from the carryout, there is overflow

To check if the MSB is different from the carry out,
check if

A. MSB AND Carry == 0

B. MSB OR CARRY == 1

C. MSB NOR CARRY == 0

D. MSB XOR CARRY == 1

E. None of the above

Reading

• Next lecture: Clocks, Latches and Flip flops

– 3.6

• Problem set 5

– Due Friday

• Lab 4

– Due Monday

31

	Slide 1: CSCI 210: Computer Architecture Lecture 17: Arithmetic Logic Unit
	Slide 3: CS History: Mohamed M. Atalla
	Slide 4: Arithmetic and Logical Unit (ALU)
	Slide 5: Our ALU will support the following instructions:
	Slide 6: 1-bit ALU: AND and OR
	Slide 7: 1-bit Binary Adding
	Slide 8: Half Adder
	Slide 9: Below is the truth table for the SUM output of a half adder. What is the Boolean algebra function that will give us this truth table?
	Slide 10: Below is the truth table for the CARRY output of a half adder. What is the Boolean algebra function that will give us this truth table?
	Slide 11: Binary Addition with Arbitrary Number of Bits
	Slide 12: Full Adder from Half Adders
	Slide 13: What if both half adders have carry-out?
	Slide 14: Ripple-Carry Adder
	Slide 15: 1-bit ALU
	Slide 16: Subtraction: a − b
	Slide 17: We can use a NOT gate to invert the input. To add one to the input, we should
	Slide 18: 1-bit ALU with Subtraction
	Slide 19: Adding NOR
	Slide 20: To add NOR to the ALU, we need to add
	Slide 21: 1-bit ALU with NOR
	Slide 22: Adding slt
	Slide 23: 1-bit ALU: Add new input for slt
	Slide 24: How do we tell if a < b?
	Slide 25
	Slide 26: 1-bit ALU for the Most Significant Bit
	Slide 27: Recall: Overflow
	Slide 28: a and b have different signs. Will adding them ever result in overflow?
	Slide 29: Adding overflow detection to add
	Slide 30: To check if the MSB is different from the carry out, check if
	Slide 31: Reading

